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Figure: MCTM (orange)
applied to a complex data
distribution (blue).

• Multivariate conditional density estimation is a
challenging task.

• Neural network based approaches offer great flexibility but
lack interpretability.

• Statistical methods focusing on interpretation of feature
effects, lack flexibility.

⇒ Let’s combine the best of both worlds!
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Our Contributions
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Figure: Our Approach (orange)
applied to a the same complex
data distribution (blue).

We propose a hybrid approach combining the transparency of
multivariate conditional transformation models (MCTMs) [1]
with the flexibility of normalizing flows (NFs) [2].

• Understand the impact of features on each response
variable within the marginal distribution.

• Simultaneously enable complex modeling of the
dependency structure among outcome dimensions.

• We assessed its effectiveness on both simulated and
real-world datasets.
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Transformation Models
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Conditional Transformation Models [3, 4]
• Use flexible, strictly monotone,

covariate-dependent transformations ℎ(𝑦|𝐱) to
map the data to a reference distribution 𝐹𝑧.

• Allow conditional density estimation under weak
assumptions.

• Likelihood is given by the transformation
theorem for densities [5]:

𝑝𝑦(𝑦|𝐱) = 𝑝𝑧 (ℎ(𝑦|𝐱)) |det (∇ℎ(𝑦|𝐱))|

• The absolute value of the Jacobian determinant
ensures that the probability mass is preserved.
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Transformation Models

Bernstein
Polynomial
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Bernstein Polynomials
1. Can approximate any continuous function, to any

desired accuracy, over a prescribed interval [6].
2. Ability to increase the flexibility at no cost to the

training stability [7].
3. Easy to enforce monotonicity [4].
4. Gives smooth approximations even for high order

polynomials [6].
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Multivariate Conditional Transformation Models [1]

• Lower triangular (𝐽 × 𝐽) coefficient matrix for linear dependencies:

Λ(𝐱) =
⎛⎜⎜⎜⎜
⎝

1 0
𝜆21 1

⋮ ⋮ ⋱
𝜆𝐽1 𝜆𝐽2 ⋯ 1

⎞⎟⎟⎟⎟
⎠

• Multiplied with marginal transformations ℎ̃𝑗 (𝑦𝑗|𝐱) , 𝑗 = 1, … , 𝐽 :

ℎ(𝑦|𝐱) = Λ(𝐱) (ℎ̃1(𝑦1|𝐱), … , ℎ̃𝐽(𝑦𝐽 |𝐱))
𝑇

• Same structure as a Gaussian copula with parametrization Σ = Λ−1Λ𝑇 :
ℙ(𝐘 ≤ 𝐲) = Φ0,Σ (ℎ̃1(𝑦1|𝐱), … , ℎ̃𝐽(𝑦𝐽 |𝐱))
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Interpretation [8, 9, 10]

Shifted Bernstein polynomial

ℎ(𝑦|𝑥) = 𝜶(𝑦)⊤𝜽⏟
Bernstein Polynomial

+𝑥𝛽

Common interpretational scales depending on the distribution 𝐹𝑍 [8]
𝐹𝑍 𝐹 −1

𝑍 Interpretation of shift terms 𝛽
Logistic logit log odds-ratio
Gompertz cloglog log hazard-ratio
Gumbel loglog log hazard-ratio for 𝑌𝑟 = 𝐾 + 1 − 𝑌
Normal probit not interpretable directly
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Masked Autoregressive Flows (MAF) [13]
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Figure: Masked Autoregressive
Neural Network [11]

Factorize the multivariate distributions, based on the
chain rule of probability

𝑝𝑦(𝐲) =
𝐷

∏
𝑖=1

𝑝𝑧 (ℎ𝑖(𝑦𝑖, 𝜃𝑖(𝐲<𝑖))) |det ∇ℎ𝑖(𝑦𝑖, 𝜃𝑖(𝐲<𝑖))|

The autoregressive property 𝐲<𝑖 is enforced through
parameter masking in the neural network estimating the
parameters 𝜃𝑖 [12].
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Model Specification

𝐻1(𝐲)

𝐻−1
1 (𝐰)

First, we model the conditional marginal distributions 𝐹𝑌𝑗
(𝑦𝑗|𝐱) using a transformation

model:
𝐻1(𝐲, 𝚯 (𝐱)) = (ℎ1(𝑦1, 𝜽1,𝐱), … , ℎ1(𝑦𝐽 , 𝜽𝐽,𝐱))⊤ = (𝑤1, … , 𝑤𝐽)⊤

The parameters for this transformation can be modeled in the same interpretable fashion
as the original MCTM allow.
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Model Specification

𝐻1(𝐲)

𝐻−1
1 (𝐰) 𝐻−1

2 (𝐳)

𝐻2(𝐰)

We model the dependencies between elements of 𝐖 using an autoregressive flow:

𝐻2(𝐰, 𝚿(𝐰, 𝐱)) = (𝑤1, ℎ2(𝑤2|𝝍2,𝑤1,𝐱), … , ℎ2(𝑤𝐽 |𝝍𝐽,𝐰<𝐽,𝐱)) = (𝑧1, … , 𝑧𝐽)⊤

The parameters 𝝍𝑗,𝐰<𝑗,𝐱 of the transformation functions ℎ2(⋅) are estimated by a masked
neural network depending on previous elements of 𝐰 and covariates 𝐱.
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Parametrization and Interpretability

Marginal Transformation (𝐻1)
• Can utilizes shifted Bernstein polynomials: ℎ(𝑦|𝑥) = 𝜶(𝑦)⊤𝜽 + 𝑥𝛽
• Same interpretational scale as MCTMs.
• Example: With a logistic base distribution, linear effect coefficients represent changes

in log-odds ratios.

Autoregressive Flow (𝐻2)
• Parameters are estimated by a masked neural network.
• Models complex dependencies but lacks direct interpretability.

⇒ We prioritizes marginal interpretability.
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Model Training and Inference

Optimize the model parameters 𝝎
• Minimize the conditional negative log-likelihood:

NLL(𝝎|𝒟) = − ∑
(𝐲,𝐱)∈𝒟

log 𝑓𝑍 (ℎ𝝎 (𝐲|𝐱)) |∇ℎ𝝎 (𝐲|𝐱)|

• 𝐻1 and 𝐻2 are trained separately for optimal results

Sample from the Learned Distribution
1. Sample 𝐳 from the base distribution 𝐹𝑍 .
2. Apply the inverse autoregressive flow: 𝐰 = 𝐻−1

2 (𝐳|𝐱).
3. Apply the inverse marginal transformation: 𝐲 = 𝐻−1

1 (𝐰|𝐱).
In short: 𝐲 = 𝐻−1

1 (𝐻−1
2 (𝐳|𝐱)|𝐱) with 𝐳 ∼ 𝐹𝑍 .

13 / 25



1. Motivation

2. Background and Related Works

3. Proposed Hybrid Models

4. Experiments

5. Summary

14 / 25



Simulated Data
Comparing: Multivariate Normals (MVN), Multivariate Conditional Transformation
Models (MCTM), Coupling Flows (CF), MAF, and Hybrid Coupling Flows (HCF). HCF
combines element-wise Bernstein polynomials for marginals with a coupling layer for
dependencies using either Bernstein Polynomials (B) or quadratic Splines (S).

MVN MCTM CF (S) CF (B) MAF (S) MAF (B) HCF (S) HCF (B)

Circles (Uncond.)

Circles (Cond.)

Moons (Uncond.)

Moons (Cond.)
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Malnutrition Data

Child malnutrition data from India, modeling the joint distribution of three indicators
(stunting, wasting, underweight) conditional on child age (cage).
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Marginal effects indicate nonlinear
shifts toward lower nutrition status
with increasing age.
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Malnutrition Data
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Figure: QQ plot comparing empirical quantiles of the dataset with those generated by the three models.
The solid lines represent the mean, while the shaded areas indicate the 95% probability intervals obtained
from 20 trials of randomly initialized models.
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Summary

• Our hybrid approach combines the interpretability of CTMs with the flexibility of
autoregressive NFs.

• results on simulated and real-world datasets showed that our method is competitive
with state-of-the-art methods.

• Ideal for understanding individual feature effects while modeling complex response
variable relationships.

Open Questions
• Understanding feature effects on the dependence structure in 𝐻2 remains an open

research question.
• Possible analyses include examining flow parameter variations with feature values or

employing xAI techniques for insight.
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Thank you!
Do you have any Questions?

Feel free to get in touch!

Poster Session 1 (Today, 16:00-18:00)
LinkedIn /in/MArpogaus
GitHub /MArpogaus

Mail marcel.arpogaus@htwg-konstanz.de

Source Code https://github.com/MArpogaus/hybrid-flows
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Normalizing Flows [12, 2]
In the Machine Learning literature, transformation models are defined as a composition
ℎ−1(𝑧) = 𝑓𝐾 ∘ 𝑓𝐾−1 ∘ … ∘ 𝑓1(𝑦) of 𝐾 simple transformation functions 𝑓𝑖, to model a
generative process, known as Normalizing Flow [2].

z ∼ pz(z)

simple base distribution
z1 ∼ p1(z1) z2 ∼ p1(z2) zK ∼ py(y)

complex distribution

z z1
f1

z2
f2

. . .
f3

y
fK

Figure: Illustration of a normalizing flow, transforming a simple distribution 𝑝𝑧(𝑧) to a more complex one.
Illustration inspired by [14]
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Relation to Copula Methods

(a) Original Data (b) Normalized Marginals (c) Uniform Marginals

• The first step (𝐻1) models marginals 𝐹𝑌𝑗|𝐗 and transforms them to the base
distribution 𝐹𝑍 .

• Applying the PIT, 𝑢𝑗 = 𝐹𝑍(𝑧1𝑗), yields uniform marginals.
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Relation to Copula Methods

(a) Original Data (b) Normalized Marginals (c) Uniform Marginals

The conditional copula density 𝑐 of 𝐮 = (𝑢1, … , 𝑢𝐽)⊤ is given by:

𝑐(𝐮|𝐱) =
𝑓𝐘|𝐗(𝐹 −1

𝑌1|𝐗(𝑢1|𝐱), … , 𝐹 −1
𝑌𝐽 |𝐗(𝑢𝐽 |𝐱)|𝐱)

∏𝐽
𝑗=1 𝑓𝑌𝑗|𝐗(𝐹 −1

𝑌𝑗|𝐗(𝑢𝑗|𝐱)|𝐱)
.
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Benchmark datasets
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• We evaluate our method on five benchmark datasets
(POWER, GAS, HEPMASS, MINIBOONE and
BSDS300) and compare Masked Autoregressive Flows
(MAF) with our Hybrid Masked Autoregressive Flows
(HMAF).

• HMAF generally provide comparable results compared
to MAF.
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Malnutrition: Inverse Marginal Shift
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• Inverse marginal shift terms reveal complex nonlinear age
effects, more pronounced for stunting and underweight.

• Acute malnutrition (as measured by the stunting indicator)
materializes more quickly than chronic malnutrition (as
measured by the wasting indicator).

• Underweight represents a mixture of both acute and chronic
malnutrition, which again fits with the estimated shift term.
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Malnutrition Marginal Transformation
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Figure: QQ plots of transformed samples against a standard normal distribution. Deviations from the
diagonal indicate non-normality. The solid line represents the mean, while the shaded area indicates the
95% probability intervals obtained from 20 trials of randomly initialized models.
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Runtime of Model Variants
Runtime for training and evaluating our models on the HPC Cluster at the University of
Applied Sciences Esslingen, utilizing NVIDIA L40S GPUs with 48 GB VRAM.

Table: Runtime in Minutes for training and evaluation of models on benchmark data. Variance resulting
deviations from 20 runs reported as standard deviation.

model dataset name train evaluation
HMAF bsds300 1191.992 ± 537.944 481.991 ± 0.650

gas 319.809 ± 132.472 14.931 ± 0.043
hepmass 229.736 ± 155.484 15.094 ± 0.047
miniboone 82.882 ± 58.692 3.933 ± 0.012
power 437.108 ± 63.707 11.321 ± 0.091

MAF bsds300 261.977 ± 70.957 16.716 ± 0.022
gas 68.993 ± 0.073 1.858 ± 0.005
hepmass 34.774 ± 0.003 1.540 ± 0.004
miniboone 16.486 ± 1.404 0.279 ± 0.001
power 136.796 ± 0.004 4.979 ± 0.120 25 / 25



Runtime of Model Variants

Runtime for training and evaluating our models on the HPC Cluster at the University of
Applied Sciences Esslingen, utilizing NVIDIA L40S GPUs with 48 GB VRAM.

Table: Mean runtime in seconds for training and evaluation of models on malnutrition data. Variance
resulting deviations from 20 runs reported as standard deviation.

model training evaluation
HMAF (B) 260.752 ± 121.895 20.823 ± 0.535
HMAF (S) 1993.317 ± 717.933 19.649 ± 0.110
MCTM 4106.187 ± 725.136 16.877 ± 0.847
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